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Abstract

Glioblastoma multiforme (GBM), the most common type of malignant brain tumor is highly fatal. 

Limited understanding of its rapid progression necessitates additional approaches that integrate 

what is known about the genomics of this cancer. Using a discovery set (n=348) and a validation 

set (n=174) of GBM patients, we performed genome-wide analyses that integrated mRNA and 

microRNA expression data from GBM as well as associated survival information, assessing 

coordinate variability in each as this reflects their known mechanistic functions. Cox proportional 

hazards models were used for the survival analyses, and nonparametric permutation tests were 

performed for the microRNAs to investigate the association between the number of associated 

genes and its prognostication. We also utilized mediation analyses for microRNA-gene pairs to 

identify their mediation effects. Genome-wide analyses revealed a novel pattern: microRNAs 

related to more gene expressions are more likely to be associated with GBM survival 

(P=4.8×10−5). Genome-wide mediation analyses for the 32,660 microRNA-gene pairs with strong 

association (FDR<0.01%) identified 51 validated pairs with significant mediation effect. Of the 51 

pairs, miR-223 had 16 mediation genes. These 16 mediation genes of miR-223 were also highly 

associated with various other microRNAs and mediated their prognostic effects as well. We 

further constructed a gene signature using those 16 genes, which was highly associated with GBM 

survival in both the discovery and validation sets (P=9.8×10−6). This comprehensive study 

discovered mediation effects of microRNA to gene expression and GBM survival and provided a 

new analytic framework for integrative genomics.

Keywords

integrative genomics; glioblastoma multiforme; cancer survival; mediation analysis

INTRODUCTION

Glioblastoma multiforme (GBM) is the most common type of malignant brain tumor [Louis, 

et al. 2007]. GBM is rapidly fatal with median survival time between 12 and 15 months 
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depending, in some cases, upon the type of treatment [Stupp, et al. 2005]. The lack of well-

established environmental risk factors for GBM emphasizes the importance of discovering 

the genetic and epigenetic drivers of this disease in order to further our understanding of 

both its etiology and progression [Bondy, et al. 2008]. Due to the current incomplete 

understanding of GBM as well as its poor prognosis, there is a pressing need to find new 

ways to use the rapidly growing library of GBM genomic alterations to summarize relevant 

patterns in an effort to potentially target treatment efforts and help improve patient survival.

MicroRNAs are endogenous noncoding RNA molecules, usually 22 nucleotides in length. 

They take part in the epigenetic regulation of gene expression by inhibiting translation or 

inducing cleavage of mRNA in the targeted genes. Studies suggest that alterations in 

microRNA regulation contribute to cancer pathogenesis via inhibition of tumor suppressor 

genes [Bartels and Tsongalis 2009; Xiao and Rajewsky 2009]. MicroRNAs have also been 

reported to be associated with survival of GBM patients [Srinivasan, et al. 2011]. By 

understanding the biology of the relevant microRNAs, one can design small interfering 

RNAs (siRNA) that function in similar fashion to microRNAs, but can target and repress the 

expression of specific genes of interest [Castanotto and Rossi 2009]. The translational 

application of microRNA as potential biomarkers of prognosis, and as part of personalized 

therapy has made it a primary focus for future research in cancer biology [Jacobsen, et al. 

2013].

There have been emerging interests in integrating multiplatform genomic data in studying 

clinical outcomes [Ben-Hamo and Efroni 2013; Jacobsen, et al. 2013; Suzuki, et al. 2013; 

Wang, et al. 2013]. Ben-Hamo and Efroni (2013) have published an algorithm that 

integrates microRNA and gene expression to classify GBM patients’ prognosis while Wang 

et al. (2013) have published another algorithm that can perform network analyses using 

microRNA and gene expression. Suzuki et al. (2013) proposed to use microRNA target 

genes for better selection of prognostic microRNAs. Despite the wide availability of these 

prediction algorithms, the mining of relevant features in the GBM genome for potential 

clinical insights and applications is still very sparse.

We utilized a novel approach applying mediation modeling [MacKinnon 2008; Pearl 2001; 

Robins and Greenland 1992] to investigate the joint effect of microRNA and gene 

expression on GBM survival. The mediation model has been applied to analyze genome-

wide association studies (GWAS) data to disentangle the effects of genetic variants of a 

nicotinic acetylcholine receptor gene, using findings derived from multiple GWAS looking 

at the effects of cigarette smoking [VanderWeele, et al. 2012]. We also developed a method 

to integrate genetic and gene expression data in GWAS under the framework of mediation 

model [Huang, et al. 2014]. These applications illustrate the utility of a mediation analysis 

that employs mechanistic insights from genomic profiles in understanding and predicting 

clinical outcomes. In addition to its use for continuous or categorical outcomes, mediation 

analysis has recently been proposed for survival data where the outcome is the time-to-event 

[Lange and Hansen 2011; VanderWeele 2011].

In this study, we conducted thorough genome-wide analyses of microRNAs and gene 

expression along with GBM survival in a dataset of more than 500 patients. We sought 
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specifically to examine the correlation of each microRNA-gene pair, guided in this by the 

known mechanisms tying these effects together, and we were able to summarize the number 

of genes that are associated with each microRNA. Using this large and complete profile 

enabled us to further investigate their implications of coordinated variability at these loci, 

positing that they define phenotypes that affect GBM survival. We specifically hypothesized 

that microRNA regulates gene expression which consequently affects GBM survival and set 

up mediation models to evaluate our hypothesis. Our findings may shed light on the drivers 

of now poorly understood GBM progression.

MATERIAL AND METHODS

Genomic data and clinical information of glioblastoma multiforme

There are 522 patients of glioblastoma multiforme with complete genomic data on gene 

expression (UNC AgilentG4502A-07) and microRNA expression (UNC H-miRNA 8×15K) 

archived in The Cancer Genome Atlas (TCGA), a research project that maps the genome of 

many types of cancer (http://cancergenome.nih.gov/)[International Cancer Genome, et al. 

2010]. Patients who carried the IDH1 or MGMT mutations were not included in our analyses 

in order to restrict the application of our models to tumors thought to be more homogenous 

in terms of their genomic origin. In addition to genomic data, these patients have available 

clinical and survival information, including vital status, time to death, time to last follow-up, 

age, gender and race. Throughout the paper, we analyzed the level 3 data that has been 

preprocessed and normalized. We randomly divided the 522 subjects into a discovery set 

(n=348) and a validation set (n=174). To obtain robust findings and avoid false positives 

from multiple comparisons, genome-wide mediation analyses and survival analyses of the 

gene signature followed a two-stage discovery-validation process; the findings first observed 

in the discovery set need to then be confirmed in the validation set. We summarized our 

analysis procedure using a schematic in Figure 1.

Genome-wide microRNA-gene associations and survival analyses

For each microRNA, we conducted a genome-wide association analysis with 17,814 genes. 

With use of ordinary least square estimators, we regressed the expression value on natural 

log-transformed microRNA expression adjusting for age, gender and race as covariates. To 

avoid undue influence of outliers, we restricted our analyses to the middle 95% of the 

mRNA expression values. The genome-wide survival analyses with 17,814 genes were 

performed using Cox proportional hazards model [Cox 1972], adjusting for the same 

covariates. Similarly, the Cox model was also fit for the 534 log-transformed microRNAs. 

False Discovery Rate (FDR) [Benjamini and Hochberg 1995; Storey 2002] was calculated to 

address multiple comparisons.

Comparing microRNA-gene and microRNA-survival associations

We compared the number of associated genes between microRNAs associated with survival 

and those unassociated using the following steps. We first divided the 534 microRNAs into 

27 survival-related microRNAs (P<0.05) and 507 survival-unrelated ones (P≥0.05). With a 

pre-specified P-value cut-off (e.g., 10−8), we compared the number of genes that were 

associated with each microRNA in the two groups. To formally evaluate the difference in 
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the associated genes between the two groups, we then performed permutation analyses. For 

each permutation, we performed a genome-wide survival analysis by shuffling the survival 

outcome and obtained n1 survival-related microRNA (P<0.05) and n0 survival-unrelated 

ones (P≥0.05). We denoted zj as the number of associated genes (less than the pre-specified 

P-value cut-off) for microRNA j. To compare the number of associated genes between the 

two groups {z1, …, zn0} (the survival-unrelated microRNAs) vs. {zn0+1, …, zn0+n1} (the 

survival-related microRNAs), we calculated the Wilcoxon rank sum test statistic wb (b is the 

index of permutation). The reason to choose the rank-based statistic instead of other 

parametric statistics such as the t-statistic is to avoid signals driven by outliers. With 1,000 

permutations, we approximated the distribution of the test statistics {wb, b = 1, …, 1000} 

using a Gaussian mixture model with three mixtures [Cai, et al. 2012] and compared the 

statistic from the original dataset to this distribution to obtain the permutation P-value. The 

sampling scheme was with respect to subjects and provided more meaningful interpretation 

of the findings [Goeman and Buhlmann 2007]. Lastly, the analyses were repeated for 

different significance cutoffs of microRNA-gene associations, from 0.1 to 10−40.

In order to compare the tail from the distribution of the associated genes between two groups 

(i.e., survival-related and unrelated microRNAs), we further dichotomized the number of 

associated genes at the third quartile (Q3) for the number of associated genes in all 534 

microRNAs. We performed the testing procedure on whether the proportions of greater than 

Q3 between survival-related and survival-unrelated microRNAs differed. We first calculated 

the difference in two proportions, Δ. We then obtained 1,000 Δ’s from permutations where 

we again shuffled the survival outcome and repeated the genome-wide survival analyses and 

the above steps. We calculated the permutation P-value by comparing the observed Δ from 

the original dataset and its null distribution, approximated from the 1,000 permutation Δ’s 

with the Gaussian mixture model described above. Finally, the analyses were performed for 

different significance cut-offs of microRNA-gene associations.

Mediation analyses

We identified genes that mediate the effect of prognostic microRNAs on GBM survival by 

mediation analyses [VanderWeele 2011]. For each microRNA-gene pair, we fit the 

following two regression models, one a linear model and the other an accelerated failure 

time model [Wei 1992]:

where G, M and X are mRNA expression value of a gene, microRNA expression value and 

covariates, respectively; εG, the error term for gene expression follow normal distribution 

with mean 0 and variance ; ν and εT, the scale parameter and the error term for survival 

time; α’s and β’s, the regression parameters. We proposed an AFT model instead of a Cox 

model because of the rare outcome assumption for mediation analyses using Cox model 

[VanderWeele 2011], which does not hold in GBM mortality. The mediation (indirect) 

effect (ME) and the alternative (direct) effect (AE) can be calculated as:
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and their variances were calculated using the delta method. The marginal effect of 

microRNA can be decomposed into mediation and alternative effects. Although direct and 

indirect effects have been defined and used in causal inference literature, we renamed them 

here as alternative and mediation effects to better reflect their biological interpretation. The 

indirect effect or mediation effect in our setting is the effect of a microRNA on the GBM 

survival mediated through gene expression (the red path in Figure 2) whereas the direct 

effect or alternative effect is the effect on the survival independent of expression of the gene, 

but perhaps through other genes or other mechanisms not related to the gene (the blue path 

in Figure 2). The genome-wide mediation analyses were performed in the discovery set, and 

the top 1,000 microRNA-gene pairs were cross-checked using the validation set. Only the 

microRNA-gene pairs that were validated at P<0.05 and had the mediation effect in the 

same direction for both discovery and validation sets were presented.

We constructed a gene signature from the 16 mediation genes of miR-223 using hierarchical 

clustering. Kaplan-Meier survival probabilities and 95% confidence intervals (CI) were 

estimated for the subjects, and log-rank tests were performed to evaluate the difference in 

the survival probabilities.

Network analysis of the mediation genes of miR-223

We further investigated the 16 mediation genes of miR-223 and microRNAs by network 

analyses. We plotted in gray the microRNA-gene association at a cut-off of FDR<0.01% (or 

equivalently, P<1.02×0−6), and varied the size of nodes for genes and microRNAs in 

proportion to −log10 P to represent their marginal association with GBM survival. We 

superimposed with the red edges the microRNA-gene pairs with significant mediation effect 

on GBM survival in the genome-wide mediation analyses.

RESULTS

The analysis procedure was illustrated in Figure 1. We first investigated the genome-wide 

association of the mRNA expression of 17,814 genes with 534 microRNAs in tumor tissues 

of glioblastoma multiforme. The distribution of z-statistics obtained from the 9,512,676 

(17,814×534) microRNA-mRNA associations has heavy tails (gray histogram in Figure 3a), 

which indicates enriched associations between mRNAs and microRNAs in GBM. The 

enrichment was even more prominent in the top 107 (the top 20 percentile) microRNAs that 

were associated with the most genes (red histogram in Figure 3a). The distribution for the z-

statistics of the bottom 160 (bottom 30 percentile) microRNAs (the blue histogram) is very 

close to the standard normal (the black line). The microRNA associated with the most gene 

expression was miR-222, and there were 1,425 genes associated with its value at P<10−10. 

miR-142-5p and miR-223, the second and third most gene-associated microRNAs were 

associated with 1,332 and 1,262 genes, respectively, under the same cut-off. For genes 

associated with miR-222, 928 genes had positive association and 497 genes had negative 
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association (Figure 3b); for miR-142-5p, 1,105 genes had positive association and 227 genes 

had negative association (Figure 3c); for miR-223, 1,068 genes had positive association and 

194 genes had negative association (Figure 3d). The Manhattan plots of the genome-wide 

association of gene expression with miR-222, miR-142-5p and miR-223 are provided in the 

Supplement (Supplementary Figures 1–3).

MicroRNAs associated with more gene expression are more likely to be associated with 
GBM survival

We next studied whether microRNA expression, mRNA expression of genes and survival 

are coordinately variable when the analysis uses microRNAs as the anchor comparison. We 

found that the two associations (microRNA-mRNA and microRNA-survival) were related to 

each other in different aspects. First, dividing the 534 microRNAs into two groups at the 

median number of genes associated with the microRNA (>5 vs. ≤5 with association cut-off 

P<10−8), microRNAs associated with more genes had enriched signals in their association 

with GBM survival as well (P=0.068, Figure 4a). Second, dividing the 534 microRNAs into 

those that were survival-related (P<0.05) and survival-unrelated (P≥0.05), the distribution 

of the number of genes associated with the microRNA was significantly right shifted among 

survival-related microRNAs. Such differences were robust across different cut-offs of 

mRNA-microRNA associations with permutation test (smallest P=4.8×10−5, Figure 4b). 

Finally, if we dichotomized the distribution for the number of associated genes into greater 

or less than the third quartile, the difference between survival-related and survival-unrelated 

microRNAs was also significant (smallest P=5.6×10−4, Figure 4c). Therefore, we concluded 

from the above findings a robust pattern that microRNAs associated with more genes were 

more likely to be prognostic for GBM survival.

Genome-wide mediation analyses reveal genes that mediate the effects of miR-223, miR-33 
and miR-142-5p on GBM survival

Although results in the previous section seemed to suggest a coordinated microRNA-gene 

expression-survival association, it was not until we performed mediation analyses that we 

were able to directly investigate such a mediation effect. We selected 32,660 microRNA-

gene pairs with the significance for association less than 0.01% false discovery rate. For the 

32,660 pairs, we performed a genome-wide mediation analyses in the discovery set and 

selected the top 1,000 pairs with the most significant mediation effect to confirm using the 

validation set. Ninety-seven pairs from the top 1,000 were confirmed with P<0.05 in the 

validation set. For the 97 microRNA-gene pairs, we excluded those with opposite directions 

in the discovery and validation sets or those with consistent association but with a P-value of 

association in the total subjects not smaller than that in either single set. These criteria gave 

us a final result of 51 pairs (Supplementary Table 1). Of these 51 pairs, there are 16 

mediation genes for miR-223 on the effect of GBM survival (Table 1); 7 genes for miR-33; 

5 genes for miR-142-5p; 4 genes for miR-130b; 2 genes each for miR-124a, miR-129, 

miR-142-3p, miR-338 and miR-93; and 1 gene each for miR-128a, miR-128b, miR-139, 

miR-181c, miR-181d, miR-29a, miR-34a, miR-9 and miR-9*. The results of the mediation 

analyses for miR-223, miR-33, miR-142-5p, miR-130b as well as the two known prognostic 

microRNAs, miR-221 and miR-222 [Medina, et al. 2008; Quintavalle, et al. 2012; Zhang, et 

al. 2010] were presented in Supplementary Tables 2–7.
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The mediation effects from the same microRNA through different genes showed the same 

direction of the effect. For example, the 16 mediation effects of miR-223 were all hazardous, 

i.e., the survival time decreased with the increase of miR-223 (Table 1). The effect of 

miR-223 increasing from 9.3 (the first quartile) to 10.5 (the third quartile) through the most 

significant mediation gene, NFKBIZ showed a decrease in the survival time by more than 

70% (7.8×10−6). In contrast, the 7 mediation effects of miR-33 were all protective, i.e., the 

elevated expression of miR-33 increased the survival time. Another interesting finding was 

that most of the mediation genes of miR-33 also mediated the effect of miR-223, and their 

opposite mediation effects resulted from the opposite directions of microRNA-gene 

associations for miR-223 and miR-33.

The microRNAs that showed up in the mediation analyses are not necessarily marginally 

prognostic. For example, the marginal association with GBM survival were not significant 

in miR-223 (P=0.88), miR-33 (P=0.51) and miR-142-5p (P=0.60). From mediation 

analyses, we discovered that there existed alternative effects independent of these gene 

expressions and opposite to the mediation effects through their mediation genes (Tables 1 

and Supplementary Tables S2–S4). The opposite directions of the mediation effects and the 

alternative effects lead to attenuation or even negation and thus non-significant marginal 

effects, which demonstrates the advantage of using mediation analyses that disentangle the 

effect from different mechanisms.

GBM survival can be predicted by a gene signature constructed from the 16 mediation 
genes of miR-223

Hierarchical clustering of the 16 mediation genes of miR-223 revealed a gene signature 

(Figure 5a). We then used the 16-gene signature to predict overall survival of GBM patients, 

again following the two-step discovery-validation process. The 16-gene signature provided a 

significant discrimination of overall survival in the discovery set (P=0.0019, Figure 5b), 

which was confirmed in the validation set (P=7.7×10−4, Figure 5c) and led to a very 

significant association for the total subjects (P=9.8×10−6, Figure 5d). The subjects carrying 

the gene signature had a one-year survival rate of 70.7% (95% CI: 63.1–79.2%); those 

without the gene signature had only 52.3% (47.2–58.0%).

Network analysis of the 16 mediation genes and microRNAs

In order to visualize and better summarize the results from the microRNA-gene association 

and the microRNA-gene-survival mediation analyses, we performed a network analysis 

using only the 16 mediation genes of miR-223, as shown in Figure 6. The 16 genes were 

highly connected to the top microRNAs with significant mediation effects as well as the two 

known prognostic microRNAs, miR-221 and miR-222. There were 107 microRNA-gene 

associations with FDR<0.01%, of which 31 pairs had significant mediation effect on GBM 

survival. Most of the microRNAs with significant mediation effects did not have marginal 

association with the rates of survival, and their mediation effects came from the strong 

microRNA-gene association in conjunction with the significant prognostic effects of the 

genes. Although the 16 genes were identified as the mediation genes of miR-223, many of 

them were also associated with or were even mediation genes of other microRNAs with 

mediation effects.
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Another noteworthy finding was that the microRNA-gene association (gray edge) is 

necessary but not sufficient to insure the presence of a mediation effect (red edge). In other 

words, a strong microRNA-gene association cannot be readily assumed to be a mediation 

effect, even if the microRNAs or genes are marginally prognostic. For example, miR-221 

and miR-222, both known to be prognostic for GBM, are associated with many of the 16 

genes tested; however, none of these strong associations turned out to have a mediation 

effect even though both of the microRNAs and all of the 16 genes are marginally associated 

with the survival.

DISCUSSION

We showed that microRNAs related to more gene expressions such as miR-221, miR-222, 

miR-223, miR-33 and miR-142-5p were more likely to be associated with GBM survival 

(P= 4.8×10−5). In other words, coordinated variability in gene and microRNA expression 

defines loci associated with GBM survival. Although the finding supported our mediation 

hypothesis (Figure 2), the evidence was too oblique to draw a definite conclusion. 

Therefore, we further conducted genome-wide mediation analyses to explicitly study the 

mediation effect from microRNAs to gene expression as it related to GBM survival. The 

mediation analyses suggested two types of prognostic microRNAs, both associated with 

significant variation in gene expression. One type of prognostic microRNAs such as 

miR-222 and miR-221 is associated with survival as well as many gene expressions but its 

prognostic effect is not mediated through the gene expressions associated with it. The other 

type of prognostic microRNAs, such as miR-223, miR-142-5p and miR-33, is not 

necessarily marginally associated with survival, but the prognostic effect is mediated 

through genes they are associated with. We then constructed a gene signature using the 16 

mediation genes of miR-223, which was highly associated with patients’ survival. As the set 

of mediation genes was identified from a biology-driven hypothesis rather than an agnostic 

gene set from pure statistical association, we expected to see a stronger biological relevance 

and a promising clinical utility of the gene set. However, the mechanistic action represented 

by the gene set in relation to microRNAs and tumor progression remains elusive and will 

require further work.

Wang et al. (2013)[Wang, et al. 2013] proposed another graphical approach using Gaussian 

graphical model to characterize undirected co-expression of microRNA and gene, which 

does not necessarily have the same interpretation as the directed mediation effects. Due to 

the difference rooted in the nature of undirected co-expression and directed mediation effect, 

the mediation genes found here (Table 1) were not reported in their paper. Wang et al. 

(2013) assumed a steady-state network whereas we focus here on causal mediation model 

that requires unmeasured confounding assumptions [VanderWeele 2011]. Additionally, 

while our mediation approach performs survival analyses using accelerated failure time 

model, Wang’s approach is not able to directly handle time-to-event survival outcome and 

requires ad hoc imputation of censored survival time, which would not be easily applicable 

to a dataset with more censored subjects. Compared to Ben-Hamo and Efroni’s 

approach[Ben-Hamo and Efroni 2013], our study also has several fundamental differences. 

First, we focused on a common profile of microRNA-gene-survival relationship where they 

are more interested in different features of microRNA-gene pairs between two prognosis 
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groups. Secondly, we aimed to classify genes and microRNAs according to their association 

with survival and biological functions where Ben-Hamo and Efroni (2013) classified 

patients for their prognosis. Lastly, our goal was to discover a new genomic feature related 

to survival while theirs was to develop a prediction model. Results based on different 

hypotheses and approaches may provide a complementary view to GBM genomics.

Although the mediation model with uni-directional arrows in Figure 2 is supported by 

biological knowledge, what we observed from the data is merely statistical association. 

Causal interpretation can be established provided a series of no unmeasured confounding 

assumptions [VanderWeele 2011]. If confounding is a concern, one may interpret the 

mediation effect as the statistical association of the coordinated variability of microRNA and 

mRNA expressions with GBM survival, rather than overstating the causality. While 

enumerating all possible confounders with proper adjustment is an ideal practice to perform 

causal mediation modeling, a more realistic approach may be to conduct independent 

biological experiments in cell lines or animal models to establish biological causality.

There have been a growing number of discoveries of microRNAs and their capability of 

regulating downstream gene expression in GBM [Karsy, et al. 2012]. Here we discovered 

genes that are not only associated with microRNAs but also mediate their effect on tumor 

progression or survival. The mediation genes of miR-223, for example, all increase with 

poor prognosis of GBM, but very few have been heavily researched in that context. 

However, most of these genes have been observed in some important immune or 

cytoregulatory role that contributes to other, more prominent types of cancer. The most 

significant mediation gene of miR-223, NFKBIZ encoding a protein that controls IL-6 

production and, as such, has a central role in regulating cytokine production that leads to the 

inflammation response [Lee, et al. 2007]. Though it commonly is involved in transcriptional 

misregulations in cancer, there exists no explanation for the mechanism, so further research 

pertaining to this protein is needed. PCSD4 (or CYTH4) encodes a cytohesin that mediates 

protein sorting and movement of solutes across the cell membrane [Ogasawara, et al. 2000]. 

Mutations of this protein have been linked to some types of breast cancer, but with little 

information linking to glioblastomas or other types of brain cancers. BCL3 is a B-cell 

lymphoma-associated gene and a proto-oncogene candidate that inhibits cell growth and 

increases DNA damage, while decreasing apoptosis in specific types of cells with damaged 

DNA [Wakefield, et al. 2013]. Though mostly associated with lymphomas, the gene is 

highly associated with solid non-hematopoietic tumors and metastasis as well. SLC16A3 is a 

promoter for a monocarboxylate transporter, responsible for moving lactate and other 

monocarboxylates across cell membranes [Fisel, et al. 2013]. It has been linked to cancer via 

its regulation of lactate transport, which results in antiapoptotic effects in the cell. 

PLEKHQ1 (or PLEKHO2) codes for a plekstrin homology domain, and controls 

intracellular signaling. Little information on it regarding cancer has surfaced, so further 

research is required.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The schematic of data analyses.
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Figure 2. Mediation model
Directed acyclic diagraph (DAG) illustrating mediation process from microRNA to gene 

expression and then to cancer survival with the red path for mediation effect (ME, or 

indirect effect) and blue path for alternative effect (AE, or direct effect), the effect of 

microRNA on survival through other mechanisms independent of gene expression.
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Figure 3. Genome-wide association of microRNA with gene expression in glioblastoma 
multiforme
A, z-statistics of microRNA-gene expression association. B, Heatmap of the gene expression 

associated with miR-222. C, Heatmap of the gene expression associated with miR-142-5p. 

D, Heatmap of the gene expression associated with miR-223. The row is sorted by the value 

of microRNAs from low (left) to high (right)

Huang et al. Page 14

Genet Epidemiol. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Gene expression-associated microRNAs are more likely to be survival-related
A, histogram of P-values for the microRNA-survival association by the number of 

associated genes. B, The 3rd quartile of numbers of genes associated among survival-related 

(P<0.05) and survival-unrelated microRNAs (blue lines) and the P-values testing for the 

difference between the two (black line). C, The proportion of associated genes > 3rd quartile 

among survival-related (P<0.05) and survival-unrelated microRNAs (blue lines); and the P-

values testing for the difference between the two (black line).
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Figure 5. Signature of 16 mediation genes of miR-223 and its association with GBM survival
A, Hierarchical clustering of the 16 mediation genes of miR-223. Kaplan-Meier survival 

probabilities by the 16-gene signature in the discovery set (n=348) (B), the validation set 

(n=174) (C) and the total subjects (n=522) (D).
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Figure 6. Network analysis of 16 mediation genes of miR-223 and 11 microRNA with prognostic 
effects
The gray edges indicate strong microRNA-gene association (FDR<0.01%); nodes with blue 

and gray colors represent microRNAs and genes, respectively; the size of nodes represents 

the significance of the association with survival and is proportional to −log10 P, the 

significance of marginal association with survival; the red edges indicate the microRNA-

gene pairs with significant mediation effect on GBM survival.
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