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Mechanism and modeling of human 
disease-associated near-exon intronic 
variants that perturb RNA splicing

Hung-Lun Chiang1,5, Yi-Ting Chen1,5, Jia-Ying Su    1,2,3,4,5, Hsin-Nan Lin1, 
Chen-Hsin Albert Yu    1, Yu-Jen Hung    1, Yun-Lin Wang1, Yen-Tsung Huang    2 
and Chien-Ling Lin    1 

It is estimated that 10%–30% of disease-associated genetic variants affect 
splicing. Splicing variants may generate deleteriously altered gene product 
and are potential therapeutic targets. However, systematic diagnosis 
or prediction of splicing variants is yet to be established, especially for 
the near-exon intronic splice region. The major challenge lies in the 
redundant and ill-defined branch sites and other splicing motifs therein. 
Here, we carried out unbiased massively parallel splicing assays on 5,307 
disease-associated variants that overlapped with branch sites and collected 
5,884 variants across the 5′ splice region. We found that strong splice sites 
and exonic features preserve splicing from intronic sequence variation. 
Whereas the splice-altering mechanism of the 3′ intronic variants is 
complex, that of the 5′ is mainly splice-site destruction. Statistical learning 
combined with these molecular features allows precise prediction of altered 
splicing from an intronic variant. This statistical model provides the identity 
and ranking of biological features that determine splicing, which serves as 
transferable knowledge and out-performs the benchmarking predictive 
tool. Moreover, we demonstrated that intronic splicing variants may 
associate with disease risks in the human population. Our study elucidates 
the mechanism of splicing response of intronic variants, which classify 
disease-associated splicing variants for the promise of precision medicine.

RNA splicing is a fundamental process to ligate exons for translation 
and excise introns for nucleic acid recycling. Alternative RNA splicing 
greatly expands the coding capacity of a genome, and its temporal 
and spatial regulation contribute to the transcriptomic complexity of 
an organism1. With the aid of splicing regulatory elements and struc-
tural composition, three essential elements within introns or near 
intron–exon boundaries act as splicing signals: the 5′ splice site (5′ss), 
the branch site (BS) and the 3′ splice site (3′ss)2. A polypyrimidine tract 

downstream of the BS and an AG dinucleotide exclusion zone facilitate 
3′ss recognition3. Together, the BS, polypyrimidine tract and 3′ss stabi-
lize U2 small nuclear ribonucleoproteins (snRNPs), U2 auxiliary factor 
2 and U2 auxiliary factor 1 for 3′ss recognition2. Mechanistically, the 
5′ss base pairs with U1 small nuclear RNA (snRNA), later replaced by U6 
snRNA over spliceosome rearrangement, as does the BS with the BS rec-
ognition sequence of U2 snRNA. Partial base pairing with the U2 snRNA 
causes the branchpoint to bulge out, and the interaction between the 
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variants13,16–19. Moreover, deep learning cannot establish the signifi-
cance of each input factor, limiting the scope for model advancement.

Functional assignment of genetic variation has never been more 
urgent given the rapid growth in screening for the genetic basis of 
disease and precision medicine. The ultimate goal of modeling splic-
ing variants is to establish the functional impact of variants and to 
recognize the contributions of splicing regulatory factors. MaPSy of 
exonic disease-relevant variants indicated that ~10% of them affected 
splicing, with splice-site strength and exonic splicing regulatory ele-
ments contributing to predictions of the variants’ effects20. In the 
absence of reliable detection of disease-relevant intronic variants, 
efforts have been made to computationally classify the impact of 
the respective mutations with respect to categories of pathogenicity 
derived from databases, but imperfect categorization limits the predic-
tive power for splicing variants21,22. To systematically study the effect 
of near-exon intronic variants on splicing, we performed unbiased 
MaPSy on disease-relevant and/or rare near-exon intronic variants, 
assessed the features determining the splicing defect and integrated 
our data into predictive models. Direct sequencing of the spliced prod-
uct enabled the identification of splicing errors beyond exon skipping. 
We further extended the models into an interactive web-based tool, 
Splice-Alternative Profile Predictor (SpliceAPP; https://bc.imb.sinica.
edu.tw/SpliceAPP/), for splicing variant prediction. Furthermore, we 
show that predicted splicing mutations are correlated with disease phe-
notype and a skewed biochemical index in the Taiwan Biobank (TWB). 
Importantly, we provide models explaining and predicting near-exon 
intronic mutations and demonstrate their functional deficiency, linking 
the noncoding variants to their potential defect in protein production.

Results
MaPSy of disease-relevant human BS and 5′ss variants
Splice-site recognition requires base-pairing of 5′ss with U1 snRNA 
and BS with U2 snRNA. Regardless of their functional significance, 
human BS motifs are degenerate and it has been reported previously 
that almost all human introns contain multiple BS6. It is unclear whether 
each BS is indispensable for splicing and how genetic variation in the 
BS contributes to splicing defects in disease contexts. In addition, the 
contextual influence of the 5′ss and BS choice remains to be elucidated. 
Therefore, we collected MaPSy on disease-relevant and/or rare vari-
ants near BS and 5′ss to systematically test their effect on splicing. A 
total of 5,307 BS variants are reported in the Human Gene Mutation 
Database23, the public archive of interpretations of clinically relevant 
variants (ClinVar)24, the database of single nucleotide polymorphisms25 
or the Catalogue of Somatic Mutations in Cancer26, all of which provide 
overlapping data on the most informative BS position 0 (the branch-
point), as well as the −2 or −3 positions of experimentally discovered 
branchpoints4–6 (Fig. 1a). We synthesized paired oligos containing 
wild-type (WT) or mutant (mt) BS and their affiliated exons in bulk, 
ligated them into three-exon splicing minigenes, and then transfected 

U6 and U2 snRNPs positions the branchpoint for nucleophilic attack on 
the 5′ss, representing the first catalytic event of splicing. Large-scale BS 
mapping studies have revealed that BS are frequently located between 
nucleotides −40 to −18 upstream of the 3′ss, and multiple BS have been 
detected within a given intron4–7. By contrast to the well-defined 5′ss 
and 3′ss, the BS appears to lack a definitive sequence motif or position 
in higher organisms. The ambiguity of the BS hinders interpretations 
of intronic sequence variation near intron–exon boundaries.

It has been estimated that 10%–30% of the pathogenic mutations 
in patients suffering rare genetic disorders alter splicing8,9. The result-
ing misspliced transcripts may generate aberrant proteins or trigger 
nonsense-mediated decay pathways that eliminate the gene product10. 
Auxiliary elements to the splice sites act as notable secondary sites 
within introns that can cause splicing defects11. However, detailed RNA 
sequencing data to support splicing phenotypes of disease-associated 
intronic variants are lacking, considering their low frequency and 
the limited likelihood of deriving their splicing outcomes from exist-
ing data. The desire to interpret splicing variants has prompted the 
development of high-throughput splicing assays and respective mod-
eling. Massively parallel splicing reporter assays (MaPSy) have been 
used to test the effect of variable sequences on splice-site choice. 
Variable sequences near the 5′ss and 3′ss, or encompassing a full 
intron/exon, have been tested in the context of fixed backbones to 
examine their effect on splicing. The results demonstrated that the 
first 5′ss adjacent to the exon is preferred, given two 5′ss of the same 
strength, whereas the 3′ss choice is more ambiguous, suggesting that 
3′ss selection involves more sophisticated regulation. MaPSy with 
random sequences at the BS showed degenerate BS recognition and 
confined dependence on the U2 core proteins12. Moreover, MaPSy with 
a split-GFP (green fluorescent protein) construct design was applied to 
examine aberrant exon skipping induced by genetic variations using 
fluorescence-activated cell sorting13. The results showed that a total 
of 54% of splicing-disrupting variants were intronic (including splice 
sites), demonstrating a considerable contribution of intronic splicing 
regulation. Taken together, these results suggest that intronic signals 
contribute significantly to splicing regulation, as does variation to the 
splicing defect, which prompted us to develop MaPSy directly on the 
disease-associated intronic variants.

Recently, deep learning has been implemented in some studies to 
decipher the contribution of primary sequences to splice-site selec-
tion8,14,15. These studies have revealed splicing variant enrichment at 
the splice sites and a sparse distribution in the exon that extends to 
the 3′-end of introns, consistent with the notion that 5′ss choice is 
made strictly by the splice-site consensus, whereas 3′ss choice engages 
more intronic regulatory elements, namely the BS and polypyrimidine 
tracts. However, the respective models were trained on differentiating 
constitutive splice sites versus alternative or mock splice sites, and 
not on intronic variants. Furthermore, the derived tools performed 
only moderately, mostly predicting splice site and exonic splicing 

Fig. 1 | MaPSy of near-exon intronic mutations. a, Experimental design 
of MaPSy13. BS mutations (0, −2, −3 to branchpoint position) documented 
in databases of human disease were collected and synthesized as 5,307 
pairs of oligos. Each oligo pair contains a WT and a BS mt variant across the 
78-nucleotide (nt) intronic and 35-nucleotide exonic regions. The oligos are 
flanked by common priming sites for amplification and ligation into 3-exon 
splicing minigenes. Accordingly, the synthesized region comprises the 3′ss of 
the second exon of the minigene. After minigene assembly, pooled minigenes 
were spliced in HEK293T cells. The resulting spliced isoforms were harvested 
and resolved by amplicon sequencing. b, Possible spliced outcomes for 
splicing minigenes. c, Numbers of HC significant splicing-altering mutations 
that exhibited a more than twofold change in four repeated experiments. 
Unspliced, significant change in unspliced reads; noncanonical, significant 
use of noncanonical splice sites; noncanonical + unspliced, significant change 

considering both unspliced and noncanonical splicing. d, Volcano plot of the 
MaPSy results. The x axis shows the WT/mt ratio for canonical splicing and 
the y axis shows the maximal f value for the four experiments on each WT/
mt oligo pair. Non-sig. refers to variants that did not alter splicing in MaPSy. 
HC-sig. refers to high-confidence significant variants that altered the splicing. 
Addition or deletion of a potential 3′ss (add AG/reduce AG, respectively) at the 
mutation is labeled. e, Validation of MaPSy. Individual WT/mt oligo pairs were 
synthesized and transfected into HEK293T cells before visualizing the spliced 
product using electrophoresis (left). Of 39 pairs, the results for 38 matched 
amplicon sequencing data, as visualized using Integrative Genome Viewer 
(IGV, right, see also Extended Data Fig. 4). NGS, next generation sequencing. 
Scale bar, 100 μm. f, Correlation of semiquantitative RT–PCR and amplicon 
sequencing results in splicing efficiency. The gray area displays the 95% 
confidence interval for predictions from the linear model.

https://bc.imb.sinica.edu.tw/SpliceAPP/
https://bc.imb.sinica.edu.tw/SpliceAPP/
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them into human embryonic kidney cells (HEK293T) to examine the 
splicing outcome. An exonic barcode was associated with the intronic 
variant for genotype identification (Fig. 1a,b). The spliced product 

was recovered by reverse transcription and library-specific amplifica-
tion, and then resolved by amplicon sequencing (Fig. 1a and Extended 
Data Figs. 1 and 2). Biased splicing efficiency and use of noncanonical 
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Fig. 2 | Significant splicing mutations demonstrate distinctive features. 
a, The 3′ splicing variants are enriched toward the 3′ss, whereas the 5′ splicing 
variants are specifically enriched at the 5′ss. b, Compared with the total library, 
significant splicing mutations are enriched for pathogenic/likely pathogenic 
mutations and are depleted in benign/likely benign mutations, as categorized 
in the ClinVar and Human Gene Mutation databases. Statistical significance 
is determined by two-sided Fisher’s exact test. ***P = 1 × 10−10 between 
nonsignificant and significant for pathogenic/likely pathogenic and P = 3 × 10−13 
for benign/likely benign. c, Significant splicing mutations are evolutionarily 
more conserved. Statistical significance is determined by two-sided Wilcoxon’s 
test. n = 5,052 3′ss variants and 5,884 5′ss variants. ***P = 1 × 10−9 for the 3′-end and 
P < 2 × 10−16 for the 5′-end. d, Nucleotide changes for SNPs. Statistical significance 
is determined by two-sided Fisher’s exact test. For the 3′-end: P = 2 × 10−9 (AtoG), 

P = 0.01 (CtoT), P = 0.002 (GtoT) and P = 0.04 (TtoC). For the 5′-end: P = 0.007 
(AtoG), P = 2 × 10−4 (CtoA), P = 2 × 10−6 (CtoG), P = 2 × 10−21 (CtoT), P = 2 × 10−7 
(GtoA), P = 1 × 10−4 (GtoC) and P = 4 × 10−6 (GtoT). e, 5′ splicing variants outside 
the splice region are associated with shorter introns. n = 3,970 3′ss variants 
and 4,831 5′ss variants. *P = 0.01. f, Genome-wide association between the 
number of intronic splicing regulatory elements near the 5′ss and the intron 
length. n = 704,953 introns. Statistical significance is determined by two-sided 
Wilcoxon’s test. All, total library; Non-sig., variants that do not affect splicing 
outcome; Sig., significant splicing mutations. The boxes in box plots represent 
median (central line) and interquartile range (25th to 75th percentile). Whiskers 
indicate ±1.5× the interquartile range from the box or the last data point within 
that and the dots show the outliers (c,e,f).
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splice sites by variants relative to their WT counterparts was identi-
fied by Fisher’s exact test. We observed that 11.0% (455 of 4,154 valid 
comparisons) of candidate variants showed a consistent pattern of 
altered splicing across four experimental replicates, among which 
244 candidates (6.1%) showed more than twofold change in the use of 
noncanonical splice sites. Variants that significantly altered splicing 
are named 'significant splicing variants', among which those with over 
twofold change are named 'high-confidence (HC) significant variants' 
hereafter (Fig. 1c,d, Extended Data Fig. 3 and Supplementary Table 1). 
MaPSy of 5,884 near 5′ss variants (−3 to +30) were collected from the 
published dataset13.

Consistent with the BS MaPSy, 38 of 39 candidate pairs (97%) 
showed a consistent change in splicing upon independent semiquan-
titative reverse transcription-polymerase chain reaction (RT–PCR) 
(Fig. 1e). Overall, the 70 independent splicing assays revealed a high 
correlation between splicing efficiency and amplicon sequencing 
results (Pearson’s correlation = 0.89) (Fig. 1f and Extended Data  
Fig. 4). Thus, our MaPSy confidently identified disease-relevant BS 
variants that caused splicing defects.

Complex and interconnected features of splicing variants
To deduce features underlying the effect of variants on splicing, we 
investigated the characteristics of the variants that caused significant 
splicing defects. Unlike the distinct enrichment of splicing variants 
at the 5′ss, splicing variants at the 3′-end of introns spread 50 nucleo-
tides into the intron with slight enrichment toward the 3′ss (Fig. 2a and 
Extended Data Fig. 5a), reflecting the degenerate features of BS and 
other splicing signals in the intronic 3′-end. The same trend has also 
been observed in other MaPSy experiments13,27. Moreover, compared 
with the overall MaPSy library or nonsignificant variants, significant 
splicing variants were enriched among pathogenic and likely patho-
genic mutations (Fig. 2b and Extended Data Fig. 5b). It is worth noting 
that although benign/likely benign variants are depleted in the pool of 
significant splicing variants, some benign/likely benign variants cause 
splicing alterations, possibly due to a misclassification arising from 
their noncoding nature (Fig. 2b). In addition, the MaPSy demonstrated 
that the significant splicing variants were highly conserved (Fig. 2c), 
potentially because they reside in the imperative splicing signals. Strik-
ingly, A and G transition mutations correlated best with significant 
splicing defects in which A-to-G mutations of the 3′-end could represent 
branchpoint mutations, whereas G-to-A mutations of the 5′-end could 
be 5′ss mutations (Fig. 2d). Furthermore, we found that significant splic-
ing variants outside the splice site were associated with shorter introns 
(Fig. 2e), suggesting enrichment of splicing regulatory elements in the 
shorter introns. To test the abovementioned hypothesis, we examined 
the number of intronic splicing regulatory elements +6 to +30 to 5′ss 
in relation to intron length in the whole human genome. The results 
showed that shorter introns are associated with enriched regulatory 
elements near the 5′ss (Fig. 2f and Extended Data Fig. 5c). Altogether, we 
identified general features underlying splicing variants using unbiased 

MaPSy screening. These features are complex and interconnected, 
implying that the combined features of the variants and their context 
determine the functional impact of mutations.

BS dysfunction and 3′ss competition alters 3′ splicing
Because of the excessive complexity of the 3′ splicing signal, we looked 
further into the specific characteristics of 3′ intronic splicing variants. 
We found that variants at branchpoints (bp 0) were enriched among 
significant splicing variants, whereas variants mutated at three nucleo-
tides upstream of the branchpoints (bp −3) were depleted, revealing 
the essentiality of the branchpoint nucleotide (Fig. 3a). Remarkably, a 
considerable proportion of significant splicing variants created novel 
3′ss AG dinucleotides (denoted ‘add AG’ in Fig. 1d and Extended Data 
Fig. 5d), and the mutation effect—the change in splicing efficiency of the 
mutant allele—was greater for novel AG variants (Fig. 3b). We reasoned 
that the impact of these novel AG dinucleotides could be a consequence 
of both BS dysfunction and 3′ss competition, so we isolated novel AG 
mutations for further investigation. A critical feature of the significant 
splicing variants was a weak 3′ss score (Fig. 3c), especially for add-AG 
mutations. The scores of the novel yet functional 3′ss were similar to 
their respective canonical 3′ss and, moreover, were frequently pre-
dicted as having a strong upstream BS (Fig. 3d, significant novel AGs 
represented by red dots are segregated in the first quadrant). At the 
sequence level, we identified a YAG 3′ss (Y = pyrimidine) with a polypy-
rimidine tract resembling a canonical 3′ss among the functional novel 
3′ss (Fig. 3e). In addition to the 3′ss property, the novel exons exhibited 
a greater difference in exon-to-intron GC content (mean △GC = 3.5%), 
thus resembling canonical exons (mean △GC = 7.3%), whereas the mean 
△GC of nonfunctional novel AG variants was only 0.11% (Fig. 3f and 
Extended Data Fig. 5e). A previous study reported that this substantial 
difference in GC content enhanced splicing and likely promoted exon 
definition for spliceosome recognition28. Similar to all variants (Fig. 2a  
and Extended Data Fig. 5a), the functional novel AG tended to be proxi-
mal to the 3′ss (Fig. 3g). These results support a complex mechanism 
involving both BS dysfunction and 3′ss competition for 3′ intronic vari-
ants and a contribution to exon definition in the splicing reaction.

Modeling determining factors of splicing defects
Despite identifying several traits specifically describing significant 
splicing variants (Figs. 2 and 3), none were absolute; even though the 
distribution of each trait diverged, there was overlap between nonsig-
nificant and significant splicing variants. Therefore, we hypothesized 
that splicing defects could be explained by multiple additive features. To 
model their combined effects, we first collected potential explanatory 
features based on our current knowledge of the RNA splicing mecha-
nism. These features included GC content, splice-site scores, BS and 
polypyrimidine tract score, pathogenicity level reported in the data-
bases, alternative splicing of associated exons, splicing efficiency, evo-
lutionary conservation score, mutation location, SNP changes, folding 
energy, openness of the splice region, predicted RNA-binding protein 

Fig. 3 | Distinctive features of 3′ splicing variants. a, Significant splicing 
mutations display enrichment for variants at bp 0 but depletion for variants at 
bp −3. P values from two-sided Fisher’s exact tests between the nonsignificant 
and HC significant variants are as follows: P = 9 × 10−6 (bp0), P = 0.04 (0, −2) 
and P = 3 × 10−5 (−3). b, Mutation effect (change in splicing efficiency of the 
mutant allele) of variants classified according to change in AG dinucleotide. 
n = 301, 282 and 3,558 for add AG, reduce AG and no AG change, respectively. 
c, The 3′ss score (weight matrix model), as determined by MaxEntScan42, 
for the nonsignificant and HC significant variants. n = 3,390 and 281 for no 
AG change and add AG. P values from a two-sided Wilcoxon test between 
Non-sig. and HC sig. are 1 × 10−6 and 1 × 10−4 for no AG change and add AG, 
respectively. d, Significant add-AG novel 3′ss (red dots) have relatively strong 
novel 3′ss and predicted novel BS. The x axis represents novel BS score, as 
assessed by SVM-BPfinder43, and the y axis is the difference between the novel 

3′ss score and the canonical 3′ss score, as determined by MaxEntScan42. e, 
Information content of base composition around the novel 3′ss. Compared 
with the nonsignificant novel AGs (above), the significant novel AGs (below) 
are accompanied by a canonical 3′ss-like sequence structure, including a 
polypyrimidine tract and a YAG 3′ss (Y:T/C). f, Differential exon–intron GC 
content for nonsignificant and significant add-AG variants. The schematic 
(right) illustrates average differential exon–intron GC content for all exons, 
novel exons, unused novel AGs and their associated exons in the library. n = 281 
add-AG variants. ***P = 3 × 10−5, two-sided Wilcoxon test. g, Distance between 
the mutation and the 3′ss of significant and nonsignificant add-AG variants. 
n = 281 add-AG variants. **P = 0.001, two-sided Wilcoxon test. Boxes in box 
plots represent medians (central line) and interquartile ranges (25th to 75th 
percentile). Whiskers indicate ±1.5× the interquartile range from the box or the 
last data point within that and the dots show the outliers (b,c,f,g).
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(RBP) binding and predicted splicing regulatory elements. We then used 
least absolute shrinkage and selection operator (LASSO) regression for 
variable selection and regularization29, and independently modeled 
3′ (novel AG and non-AG) and 5′ near-exon intronic variants based on 
distinct sets of contributing features (Fig. 4a). We further normalized all 
features by their own standard deviation for standardized coefficients. 
The independent contribution and robustness (against data perturba-
tions) of each feature was confirmed in Extended Data Fig. 6.

The 3′ novel AG model identified a high novel 3′ss score as the 
most important factor promoting the use of novel 3′ss. By contrast, a 
large distance between the variant and the 3′ss, as well as a high canoni-
cal 3′ss score, was most effective at suppressing the use of novel 3′ss  
(Fig. 4b). Other contributory factors included the level of conservation 
at the variant position (promoting novel 3′ss use), differences in novel 
exon-to-intron GC content (promoting) and the binding sites of RBPs 
(varied effects). It is worth noting that the binding sites of the potential 
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splicing enhancers heterogeneous nuclear ribonucleoprotein L-like 
(hnRNPLL) and serine and arginine rich splicing factor 7 (SRSF7) in 
novel exons promoted novel 3′ss usage. We calculated an overall area 
under the curve (AUC) = 0.881 from the receiver operating characteris-
tic (ROC) curve predicting one-third of experiments excluded from the 
training set (Fig. 4c). Because the outcome of our model indicated that 
the splicing response of novel AG variants arises from 3′ss competition, 
we examined splice-site choice when the novel 3′ss and canonical 3′ss 
were swapped. We found that the stronger 3′ss was chosen for splicing 
(Extended Data Fig. 5f), supporting the hypothesis that the use of novel 
intronic 3′ss results from 3′ss competition.

For non-AG variants, the model identified ‘G’ variants as the strong-
est factor promoting splicing defects. Strong WT splicing efficiency 
and having the same predicted branchpoint in WT and mutated (alt) 
introns suppressed splicing defects (Fig. 4d). Other factors contribut-
ing to splicing defects included the level of conservation of the variant 
position (promoting), polypyrimidine tract strength (suppressing) 
and the distance between the variant and the 3′ss (suppressing). We 
calculated AUC = 0.836 from the ROC for the test data (Fig. 4e).

The model for the 5′-end splicing variants is relatively simple in 
that the majority of splicing signals lie in the splice site. Therefore, 
destruction of 5′ss is the major factor contributing to splicing change. 
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In line with the exon definition model, long introns and high exonic 
folding energy suppress the splicing change (Fig. 4f). We calculated 
AUC = 0.962 from the ROC for the test data (Fig. 4g). Contributory 
factors for splicing defects and their coefficients are listed in Sup-
plementary Table 2, and a summary of the models is given in Fig. 4h–j.

To generalize the applicability of our model, we generated mod-
els independent of WT splicing efficiency (Extended Data Fig. 7a–d 
and Supplementary Table 2) and then examined their performance 

by predicting the splicing outcomes of 107 near-exon 3′ intronic vari-
ants (−44 to −18 to the 3′ss) and 314 near-exon 5′ (−3 to +30 to the 5′ss) 
variants, whose splicing defects have been assayed experimentally  
(Fig. 5)27,30. These models predicted almost perfectly the effect of 5′ vari-
ants and 3′ add-AG variants, and the effect of the non-AG variants was 
predicted with >91% sensitivity (Fig. 5b). Remarkably, the model reliably 
predicted both BS and nonBS variants (Fig. 5b), as well as 5′ variants out-
side the splice site (Fig. 5c). Finally, to test model performance in terms of 
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predicting in vivo splicing outcome in a genomic context, we examined the 
effects of sixty-six 3′ intronic variants for which in vivo splicing has been 
assessed by sequencing or RT–PCR. The results show that in vivo splicing 
effects are also well predicted by our model (Fig. 5b). Finally, compared 
with the deep-learning-based predictor, our model outcompetes the sen-
sitivity of SpliceAI8 and MMSplice15 without sacrificing much specificity  
(Fig. 5). Together, these findings demonstrate that our model illustrates 
the features underlying splicing defects and predicts the splicing defects 
for near-exon intronic variants in minigene and genomic contexts.

Splicing efficiency models complement splicing defect models
Our experimental design (Fig. 1a) provided a unique opportunity to assess 
the effect of a variable 3′ss region against fixed 5′ss regions and exons. 
Again, we used LASSO regression to model the features contributing to 
splicing efficiency. Our model identified 3′ss score as the most impor-
tant factor explaining splicing efficiency. Intriguingly, the model also 
revealed folding energy of both exons and introns to be a profound con-
tributor promoting splicing efficiency. Moreover, if the exon represents an 
alternatively spliced region, it generally displayed low splicing efficiency  
(Fig. 6a). The model reflects experimental data on splicing efficiency 
with a Pearson’s correlation of 0.48. We adopted a similar approach to 
model the splicing efficiency of add-AG and non-AG variants. Both mod-
els identified WT splicing efficiency and the difference between mt and 
WT 3′ss score as dominant features for predicting mt splicing efficiency  
(Fig. 6b,c and Supplementary Table 2). In agreement with the prediction 
of splicing defects (Fig. 4b,d), distal branchpoints and pathogenicity, as 
reported in databases, were correlated with weaker mt splicing efficiency  
(Fig. 6b,c). Overall, these models adequately explain the splicing effi-
ciency of add-AG variants (Pearson’s correlation of 0.84) and that of 
non-AG variants (Pearson’s correlation of 0.78). Models for add-AG and 
non-AG variants, but excluding WT splicing efficiency further emphasized 
the contribution of mt 3′ss strength, differential exon-to-intron GC con-
tent and mt folding energy (Extended Data Fig. 7e–h and Supplementary 
Table 2). Together, these models indicate that both splice-site strength 
and structural cues determine splicing efficiency.

Intrinsic property of the BS corresponds to splicing outcome
Our modeling results indicate that dependency on the BS for splicing is 
sensitive to its location relative to the 3′ss, nucleotide composition and 
base-pairing energy with U2 snRNA. Disruption of a strong and evolu-
tionarily conserved BS likely impairs splicing (Figs. 4 and 6). Therefore, 
we further analyzed these traits in a genomic context. We first analyzed 
the BS distribution relative to the 3′ss and contingent on the branch-
point sequence5. The canonical A and C branchpoints peaked at the 
−25 nucleotide position upstream of the 3′ss, whereas T branchpoints 
peaked at the −28 nucleotide position, likely because of skipping of 
reverse transcriptase to the −2 position (Extended Data Fig. 8a). Overall, 
the branchpoints are located between −18 and −40 nucleotides upstream 
of the 3′ss. Because A and C are the most frequently reported functional 
branchpoints, the similar distribution of HC significant variants (Extended 
Data Fig. 5a; median, −25 nucleotides) suggests disruption of functional 
branchpoints. Branchpoints located at positions between −20 and −30 
nucleotides from the 3′ss are most likely to support constitutive splicing 
(Extended Data Fig. 8b). Additionally, branchpoints between the −18 and 
−26 nucleotide position base pair most strongly with the U2 BS recogni-
tion sequence (Extended Data Fig. 8c) and are the most evolutionarily 
conserved (Extended Data Fig. 8d), indicating an optimal functional 
capacity for BS in the region between the −20 and −30 nucleotide posi-
tions upstream of the 3′ss and further implying nonuniform evolutionary 
pressure for BS relative to the 3′ss. This genome-wide BS profile supports 
functional dependency of the BS on intrinsic properties and position.

Functional impact of intronic splicing variants in TWB data
To examine whether the splicing defect of BS variants influences popu-
lation health, we investigated the disease association and biochemical 

index of individuals with BS variants in the TWB31. We used a collec-
tion of 68,978 community samples from the TWB. We found that 16 (15 
imputed) of the experimentally defined and 328 SpliceAPP-predicted 
significant splicing variants were probed in the TWB and displayed allele 
frequencies >0.01. To test whether the splicing variants associate with 
abnormal physiological presentation, we employed a quantile–quantile 
plot to compare the P value distribution of the significant splice-altering 
intronic SNPs associated with skewed biochemical indices against theo-
retical P values (Fig. 7a). Inflation of P values toward the splicing variants 
suggests that TWB subjects harboring splicing variants are more likely 
to display abnormal biochemical phenotypes. About half of the splicing 
variants were associated with self-reported diseases and/or a skewed 
biochemical index relative to the major allele (Supplementary Table 3 
and Fig. 7b,c). These results indicate that splicing defects derived from 
the intronic variants potentially alter physiological fitness.

To further examine the underlying etiological mechanism, we 
examined one of the disease-associated branchpoint mutations 
from the TWB. We found that branchpoint mutation rs72835097 of 
Calmodulin-binding transcription activator 2 (CAMTA2) was associated 
with hypertension in human males (Fig. 7b) and increased platelet 
counts in aged individuals (Fig. 7c). This outcome supports the find-
ings of a previous study showing that CAMTA2 is a transcriptional 
coactivator involved in cardiac growth and is responsible for expres-
sion of natriuretic peptide A (NPPA)32. Reduced NPPA levels result in 
salt-sensitive hypertension in NPPA-disrupted mouse models33,34. In 
addition, meta-analyses have indicated that CAMTA2 polymorphisms 
are associated with platelet properties35,36. These congruent findings 
prompted us to further characterize rs72835097 BS variants.

The rs72835097 mutation, representing an A-to-G transition at  
position −41 in intron 14 of CAMTA2, was one of the predicted branch-
points displaying a moderate conservation score (Fig. 7d) and this has 
been verified by sequencing. Mutation of −41A resulted in partial loss of 
the normal spliced form in a minigene assay (Fig. 7e), conducted similarly 
to our library design (Fig. 1a). Using Lariat PCR, we discovered two proba-
ble branchpoints in CAMTA2 intron 14 at positions −35A and −41A (Fig. 7f).  
Splicing results for the full-length CAMTA2 exons 14–16 genomic frag-
ment indicated that the −41A and −35A branchpoints are partially redun-
dant, but that −41A is the predominant branchpoint (Fig. 7g). CAMTA2 
exon 15 skipping causes a frameshift error and premature translation 
termination. The resulting truncated protein lacks the nuclear localiza-
tion signal and ankyrin-repeat domain, the latter being necessary for 
histone deacetylase (HDAC5) binding to repress CAMTA2 transactiva-
tion activity32. A previous study has shown that CAMTA2 is recruited to 
the NPPA promoter to induce cardiac growth by associating with the 
cardiac homeodomain protein Nkx2-5 (ref. 32). Accordingly, we tested the 
transactivation activity of WT and truncated CAMTA2 by means of a pro-
moter luciferase assay with a Nkx-binding element (NKE). The truncated 
CAMTA2 isoform failed to activate the NKE promoter and interact with 
HDAC5 (Fig. 7h). Finally, we tested the requirement of CAMTA2 activity 
on expressing cell adhesion molecule CD62P (P-selectin) associated with 
activated endothelial cells and platelets37. The results showed that WT 
CAMTA2 activity induced CD62P expression, whereas truncated CAMTA2 
did not (Fig. 7i). Overall the evidence suggested that CAMTA2 branch-
point mutation abolished its normal function in transcription transac-
tivation relevant to human health. Collectively, we have demonstrated 
that BS variants are associated with disease and abnormal biochemical 
indices in the Taiwanese human population, and that diagnosis of splic-
ing variants lays the foundation for precision medicine.

Discussion
Given exponential increases in reports on genetic variation in this 
postgenomic era, precise annotation and interpretation of each vari-
ant is urgently needed. A significant proportion of genetic variation 
alters splicing, thereby leading to disease. However, because of the 
ill-defined intronic splicing regulatory elements, it is difficult to identify 
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Fig. 7 | Functional branchpoint mutations in the TWB. a, Quantile–quantile 
plot of the nominal P value distribution of SNPs associated with biochemical 
indices in the TWB, determined by logistic/linear regression. The dashed line 
represents a hypothetical distribution equal to the theoretical P value.  
b, Significantly higher risk of hypertension arising from the CAMTA2 branchpoint 
SNP rs72835097 minor allele in homozygous male carriers. c, Significantly 
skewed platelet count arising from the rs72835097 minor allele among 
homozygous carriers in the TWB. The boxes in box plots represent medians 
(central line) and interquartile ranges (25th to 75th percentile). Whiskers indicate 
±1.5× the interquartile range from the box or the last data point within that, 
and the dots show outliers. d, Higher conservation level around two predicted 
branchpoints of CAMTA2 intron 14, especially at position −41A (rs72835097).  

e, Minigene assay of partial CAMTA2 intron 14 and exon 15 ligated to GFP exons, 
as shown in Fig. 2a. f, Lariat PCR traversing the lariat junction identified two 
branchpoints (positions −35 and −41) in CAMTA2 intron 14. g, Minigene assay of 
full-length CAMTA2 exons 14–16. The −35 and −41 branchpoints were mutated 
into G, individually or in concert. h, Transactivation activity of WT or truncated 
CAMTA2 on the NPPA promoter, as revealed by luciferase reporter assays. NKE 
binds to Nkx2-5 and CAMTA2. The CAMTA2 interactor HDAC5 was coexpressed 
to test the antagonizing effects of CAMTA2 and HDAC5. n = 13 or 5 biologically 
independent samples. Data are presented as mean ± s.d. i, CAMTA2-mediated 
CD62P expression in HEK293T cells with or without PMA treatment. A 
representative experiment of three repeats is presented (e,f,i).
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intronic splicing variants. It is particularly challenging to interpret 
3′-end intronic variations for two major reasons. First, unlike 5′ss in 
which the splice-site motif is strictly located to six nucleotides in the 
intron, 3′ss recognition requires a three-nucleotide ‘YAG’ splice site, a 
polypyrimidine tract and a BS, which can extend up to 60 nucleotides 
into the intron, with some exceptionally distal BS2,5. Second, the human 
BS motif is not well-defined and it remains unclear whether there is 
redundancy among multiple BS. Hence, to identify the determinants 
of splicing defects arising from variations in the near-exon intronic 
region, we collected data on disease-relevant and rare BS variants and 
examined their effect on splicing by means of MaPSy.

In searching for features corresponding to the defective splicing 
phenotype, we found that the canonical 3′ss strength, the variant posi-
tion relative to the splice site and the conservation level of the variant 
position are negatively correlated with the splicing defect (Fig. 4 and 
Extended Data Fig. 5). Baeza-Centurion et al.38 proposed that splicing 
variants are concentrated around alternatively spliced exons with inter-
mediate inclusion levels, suggesting a protective role for constitutive 
splicing against sequence variations. Furthermore, exonic structural 
features, such as highly differential exon-to-intron GC content and 
high exonic folding energy also preserve the splicing reaction against 
intronic variation (Fig. 4 and Extended Data Fig. 5). This scenario sup-
ports the notion that exonic mutations are more likely to interrupt 
splicing in diseases frequently caused by splicing mutations20,39. How-
ever, the BS with higher sequence conservation (stronger base pairing 
with U2 snRNA) and the branchpoint position (bp 0) are more sensitive 
to mutations (see models in Fig. 4). Thus, well-defined exons and robust 
splice sites are rather immune to intronic sequence variation, whereas 
well-conserved BS are relatively indispensable for splicing.

To better explain the influence of variants on splicing, we divided 
the variants into 5′ and 3′, which include potential novel 3′ss (add AG) 
and other (non-AG) mutations, and then trained three models by LASSO 
regression, before testing the models on datasets of near-exon intronic 
mutations. Although the 3′ models were trained on BS mutations, they 
performed surprisingly well even on the nonBS variants, potentially 
because the models encompass general features of the variants, such 
as location and conservation level. We found that the exonic features 
in the intron, such as GC content, SRSF binding sites, are particularly 
important in activating the novel 3′ss, suggesting that the 3′ss selection 
depends on exon definition. Interestingly, although it seems that high 
splicing efficiency and strong splice sites can preserve splicing in general, 
in our 3′ add-AG model, splicing efficiency is not a predictive feature. In 
other words, the splice-site competition model depends on the relative 
strength of the two competing 3′ss, but not on the absolute strength of the 
canonical 3′ss. For the 3′ model, we did not expect to find that presence/
absence or number of additional ‘As’ between −18 and −40 nucleotides 
(the optimal branchpoint location) hardly affected the splicing outcome, 
because it has been hypothesized that additional As near BS mutations 
could be used as a cryptic BS to rescue splicing40. Also, in all our models, 
we found that local structural ‘openness’ had a limited impact on splicing 
prediction, although it has been proposed previously that there is a pro-
nounced preference for or against splice sites with secondary structures 
in different settings20,41. Finally, we did not detect more severe splicing 
defects from indels compared with SNPs, which was also unexpected 
considering the greater sequence alteration caused by indels.

By contrast to the 3′-end, a novel 5′ss is not a major splice-altering 
mechanism of the 5′ intronic variants. Although exonic structure does 
protect the splicing from the sequence variation, the destruction of 
canonical 5′ss is the main cause of 5′ss dysfunction. Furthermore, 
although the PhyloP score, a per-base conservation score, contrib-
utes to both 3′ and 5′ prediction, the phastCons score that measures 
conservation of a sequence window did not inform 3′ prediction at 
all. Together with the fact that 3′-end introns display lower phastCons 
scores, this outcome suggests that the 3′-end region we analyzed was 
degenerate with little conservation beyond a ‘motif’ level, whereas the 

5′ intronic splicing signals were more structured and consolidated in 
sequence blocks. This observation supports the notion that 3′ss selec-
tion involves more complex splicing regulation.

Finally, we compared our predictive power with SpliceAI devel-
oped by Illumina8 and MMSplice15, and found that our models 
out-performs both, especially in terms of its sensitivity for detecting 
intronic splicing variants (Fig. 5) when using the recommended cutoff 
(△ score 0.5 of SpliceAI, delta_logit_psi |2| of MMSplice). Indeed, we 
achieved greater sensitivity even when compared with a high-recall 
cutoff (△ score 0.2) specified by SpliceAI (3′: 90.3% versus 54.8%; 5′: 
100% versus 82.4%), as well as for our in vivo splicing data (3′: 85.7% 
versus 9.5%). Importantly, because our principal goal was to identify 
splicing variants among variants of unknown significance, we feel it is 
justifiable to maintain a high-sensitivity cutoff. These results suggest 
that model training against specific classes of variants, such as intronic 
mutations, is necessary to accurately annotate the variants’ effects, 
especially relative to generic deep learning on mock splice sites.

In conclusion, our study addresses the need to explain and clas-
sify intronic variants that affect splicing and, conceivably, provides 
a molecular foundation for interpreting intronic mutations in the 
context of genetic diseases.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
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Methods
Construction of MaPSy library DNA templates
MaPSy library DNA templates were assembled by overlap extension 
PCR with Phusion High-Fidelity DNA Polymerase (Thermo Fisher Sci-
entific). Initially, the oligonucleotide library sequences (CustomAr-
ray) were amplified into double strands by PCR and cleaned up using 
columns (Qiagen). The intron-containing enhanced GFP backbones 
were created according to a previous study44, followed by insertion 
of CAMTA2 exon 15 and its flanking introns between the BamHI and 
SalI sites (pGint-CAMTA2 exon 15). The library amplicons replaced 
the 3′ss of CAMTA2 exon 15 through sequential overlapping PCR. The 
final product contained a CMV promoter and three exons in which the 
first 3′ss is the oligonucleotide library. Details of the procedure can be 
found in Extended Data Fig. 2. Finally, the assembled full-length DNA 
templates were again subjected to PCR clean-up. Before the following 
transfection experiment, we conducted next-generation DNA sequenc-
ing to check sequence completeness, which revealed that 93.6% of the 
MaPSy library pairs had been successfully reconstituted.

Overexpression, RNA extraction and RT–PCR
HEK293T cells cultured in six-well plates were transfected with 1 μg 
of constructs and harvested 24-h posttransfection. For the phorbol 
12-myristate 13-acetate (PMA) assay, cells were treated with 10 nM PMA 
for 24 h at 37 °C. Total RNA was extracted according to the Direct-zol 
RNA MiniPrep Plus kit (Zymo Research) instructions for RNA extraction. 
cDNA was prepared from 2 μg of total RNA using SuperScript IV reverse 
transcriptase (Thermo Fisher Scientific) with a random hexamer, follow-
ing the manufacturer’s protocol. All RT–PCR products were sequenced 
to confirm the spliced outcome (normal splicing, intron inclusion and 
exon skipping). See Supplementary Table 4 for primer sequences.

Amplicon sequencing reads alignment
The PCR amplicons were subjected to Illumina NextSeq 150 single-end 
sequencing. Between 0 and 3 random nucleotides were attached at the 
end of the amplicons to ensure balanced fluorescence detection on 
the NextSeq platform. Single-end reads were aligned to our synthetic 
‘reference genome’ by hisat2 (v.2.2.1). High-quality (q60) reads selected 
by SAMtools45 (v.1.7) crossing barcode position with GT–AG splice 
junctions annotation by RegTools46 (v.0.5.2) were preserved as spliced 
reads. Reads without junctions spanning the most used splice-site 
position were preserved as unspliced reads.

Criteria for selecting splice-altering mutation candidates
WT and mt were separated into three categories: spliced versus 
unspliced, canonical versus noncanonical in all spliced reads and 
canonical versus noncanonical plus unspliced reads. In case the mini-
gene assay could not reflect an unanimous splicing outcome in the 
genomic context, the canonical definition we used is the most used 
splice site in WT across four repeats and derived mt canonical splice site 
by WT result. To assess the effects of the variant in splicing efficiency 
and accuracy, a two-sided Fisher’s exact test was applied followed by 
false discovery rate correction to identify splicing variants altering the 
ratios of spliced to unspliced, canonical to noncanonical and/or canoni-
cal to both unspliced and noncanonical isoforms. Both WT/mt pairs 
exceeding 100 read counts with a q-value <0.05 across four repeats are 
classified as significant. Candidates with a twofold odds ratio change 
with either WT or mt having >5% unspliced and noncanonical reads are 
recognized as HC splicing variants.

Minigene splicing for validation
DNA oligos (Integrated DNA Technologies) of selected MaPSy can-
didate sequences were amplified into double strands by PCR with 
Phusion High-Fidelity DNA Polymerase. The PCR products were then 
cloned into pGint-CAMTA2 exon 15 via the BbsI and SmaI sites. The 
resulting constructs were expressed and recovered from HEK293T as 

described above. Splicing isoforms were amplified by primers target-
ing the first two exons of the minigene (Lib0F and Lib0Rl), resolved 
by electrophoresis and visualized using a Bio-Rad Gel Doc EZ System. 
The intensity of each splicing isoform was quantified using Image J 
(National Institutes of Health).

Origins of the factor input for model building
Exon conservation. We calculate the average score retrieved from the 
University of California Santa Cruz Genome Browser (https://genome.
ucsc.edu/) PhyloP basewise conservation score derived from Multiz align-
ment of 7 vertebrates, 20 mammals, 30 primates and 100 vertebrates.

Splice-site strength. MaxEntScan42 was used to calculate 3′ss strength 
by 23-mers (20 intronic and 3 exonic sequences) and 5′ss strength by 
9-mers (3 exonic and 6 intronic sequences) using different models, 
including the maximum entropy model, first-order Markov model, 
weight matrix model and maximum dependence decomposition model 
(5′ only). We analyzed other 3′ss essential elements; BS and polypyrimi-
dine tract strength were analyzed using a mammalian U2 branchpoint 
prediction tool SVM-BPfinder43 to score the branchpoint sequence 
using the Support Vector Machine (SVM) learning algorithm classifier 
and predicted polypyrimidine tract length and score.

RNA secondary structure and U2 interaction prediction. We used the 
Vienna RNA package (v.2.4.8)47 to calculate the minimum free-energy 
structures and base pair probabilities in our minigene library, and to 
predict the dimer-forming secondary structures of the BS sequences 
using the U2 snRNP by RNAcofold function.

Motif enrichment. Sequences are analyzed by Weblogo 3 (ref. 48) to 
identify motifs enriched in significant or nonsignificant candidate 
library segments.

Splicing enhancer and silencer. ESE, ESS, ISE and ISS were collected 
from published literature49–51. They were mapped to exonic and intronic 
sequences in each WT or mt minigene construct, and the novel exon 
sequences annotated by the mutations creating novel AG as an alter-
native 3′ss.

RBP prediction. RBPs were collected from the ATtRACT database52 
to scan for specific motifs on sequences by position weight matrix. A 
95% position weight matrix match as defined by R package Biostrings 
(v.2.62.0) (https://bioconductor.org/packages/Biostrings) is the mini-
mum for counting a match.

For statistical confidence, only pairs in which both WT and mt have 
more than 100 aligned reads in all four experiments and for which the 
canonical splice sites are the most used splice sites in the WT minigene 
construct were input for statistical model building.

Statistical models built by linear regression
We build statistical models with LASSO regularization to predict splic-
ing effects and splicing efficiency in the R package glmnet53,54 (v.4.1-4). 
For the splicing effect models, the outcome Y is distributed in a binary 
fashion; that is, a mutation either affects or does not affect (1 or 0) the 
splicing decision, therefore:

log P(Yi = 1)
1 − P(Yi = 1) = β0 +

p
∑
j=1

βjXji

where Yi = 1 is the ith mt sequence that significantly affects splicing, 
and Xji is the feature j in the ith sequence. The predictive features were 
scaled according to the standard deviation for comparable coefficients. 
Intronic variants were categorized as 3′ novel AG-creating variants, 3′ 
non-AG-creating variants and 5′ variants to model their contribution 
to splicing decisions in our independently built models. LASSO 

https://genome.ucsc.edu/
https://genome.ucsc.edu/
https://bioconductor.org/packages/Biostrings
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regularization minimizes Llog + λ∑p
j=1 ||βj||, where the negative log likeli-

hood is:

Llog = −
n
∑
i=1

[− ln(1 + e
(β0+

p
∑
j=1

βjXji)
) + yi (β0 +

p
∑
j=1

βjXji)]

We utilized tenfold cross-validation to choose the tuning parameter 
λ. Ultimately, the value of λ that gives the minimum mean cross-validated 
error was selected to build each model. In our splicing efficiency models, 
logit transformation is applied to the continuous outcome Y, represent-
ing WT or mt splicing efficiency (percentage of the canonically spliced 
read count of each sequence). Two-thirds of the samples were randomly 
selected for our training models, and the remainder were used to test 
model performance. The classification power of the splicing effect 
models is measured by ROC, and the performance of splicing efficiency 
models are measured by R-square and root mean square error (r.m.s.e.).

SpliceAI splicing-altering variants prediction
We used SpliceAI v.1.3.1 to predict whether variants affect splicing 
outcome. For near 3′ss variants, any delta score in the columns ‘DS_AG 
Delta score (acceptor gain)’ or ‘DS_AL Delta score (acceptor loss)’ 
higher than 0.2 (high recall) or 0.5 (recommended) are characterized 
as splicing-altering variants. Because of our 3′ss variants collection, 
parameter -D, the maximum distance between the variant and gained/
lost splice site, was set as 200. For near 5′ss variants, any delta score in 
the columns ‘DS_DG Delta score (donor gain)’ or ‘DS_DL Delta score 
(donor loss)’ higher than the 0.2 (high recall) or 0.5 (recommended) 
are characterized as splicing-altering variants.

MMSplice splicing-altering variants prediction
MMSplice was downloaded from https://github.com/gagneurlab/
MMSplice_MTSplice, installed and performed in Python v.3.7.11. The 
required inputs for MMSplice, the reference genome (FASTA) file and 
the genome annotation (GTF) file, were downloaded from the Ensembl 
database (GRCh38.105/GRCh37.87)55.

ROC and AUC calculation
The ROC curve was constructed by plotting sensitivity versus specific-
ity for various thresholds to evaluate the diagnostic performance of 
each prediction model. AUC was estimated using the ‘auc’ function in 
the R package precrec56 (v.0.12.9).

The Taiwan Biobank data
Genotyping and phenotypic data of 68,978 Taiwanese people were 
obtained from the TWB31,57 (https://www.biobank.org.tw/) to determine 
the association of candidate SNPs and the recorded phenotypes, includ-
ing various diseases and biochemical indices. Disease information was 
self-reported and collected using questionnaires. Each participant 
was genotyped by a specifically designed chip—an Affymetrix Axiom 
genome-wide TWB 2.0 array plate with a total of 752,921 SNPs. The study 
was approved by the Institutional Review Board of Academia Sinica.

Imputation and quality control of genotyping data
Imputation. Before retrieving selected SNPs from the genotyping data, 
imputation was performed using SHAPEIT2 (v.2.r790) and IMPUTE2 
(v.2.3.1) with whole genome sequencing data of 973 individuals from 
TWB and 504 East Asian individuals from the 1,000 genome project as 
a reference panel. The following quality control steps were conducted 
based on filtered imputed data with an information score higher than 0.3.

Quality control. To ensure the reliability of the genotyping data, a 
series of quality control procedures was employed to remove chips 
with low quality and problematic individuals using PLINK v.1.9 and 
PLINK v.2.0 (refs. 58–60).

Per sample quality control. First, we checked the sex discrepancy 
between the gender recorded in the questionnaire and the gender 
based on their X chromosome heterozygosity/homozygosity rates. 
Second, we excluded individuals with a missing call rate (the propor-
tion of missing SNPs for each participants) >0.05 or heterozygosity 
rate of ±3 s.d. from the population mean. Third, related individuals 
were determined by kinship coefficient and removed for pairs having 
a kinship value >0.0884, excluding second-degree relations61. Lastly, 
using autosomal chromosome SNP genotyping data of 1,397 people 
from the 1,000 genome project (phase 3) followed by principal com-
ponent analysis, we excluded individuals whose genetic information 
is far from the Chinese Han population.

Per SNP quality control. SNPs with a low genotyping call rate (<0.05) 
or low minor allele frequency (<0.01) were excluded from subsequent 
analyses. We also tested for SNPs that significantly violated Hardy–
Weinberg equilibrium at P < 1 × 10−7.

Association analyses
We performed statistical analyses to evaluate the association of 16 
selected markers with 23 self-reported traits and 24 biochemistry 
indices levels. Linear regression was used to evaluate the association of 
each SNP with a continuous biochemical index, and logistic regression 
was implemented to test the association of each SNP with a trait that 
is dichotomous. For biochemical indices having more than two levels, 
multinomial logistic regression models were fitted using the R pack-
age nnet62 (v.7.3-17) and likelihood ratio tests were used to determine P 
values. All SNPs were tested using codominant genetic models. Square 
root of age, gender, dwelling place and batch of array were included in 
the regression models to adjust for confounding effects. To control for 
population stratification, the first ten principal components were also 
included as covariates in the models.

Luciferase assay
Twenty-four hours after cotransfection with 200 ng of pGL3-Basic NPPA 
promoter constructs with 200 ng of different pCMV-Tag 2A CAMTA2 iso-
forms and 20 ng of pRL-TK vector, with or without 200 ng of GFP-HDAC5 
(Addgene Plasmid no. 32211), HEK293T cells cultured in 12-well plates 
were harvested and processed according to the instructions for the 
Dual-Glo Luciferase Assay System (Promega). Afterwards, 50 μl of clear 
supernatant was transferred to 96-well black plates for the measure-
ment of firefly luminescence using an EnSpire Multimode Plate Reader 
(PerkinElmer). Subsequently, 50 μl of Dual-Glo Stop & Glo Reagent was 
added into each well. After incubation at room temperature for 10 min, 
Renilla luminescence was measured as above. All experiments were 
performed in triplicate and repeated at least three times.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
RNA Sequencing datasets generated during this study are available at 
the NCBI GEO: GSE179892. Other databases used in the study: UCSC 
PhyloP: https://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=1351580
935_14MOQtNDW7V78RaXEDp3Yy4m4PTb&c=chr2&hgTracksConf
igPage=configure&hgtgroup_compGeno_close=0#compGenoGroup 
ATtRACT: https://attract.cnic.es/download; Ensembl: https://asia.
ensembl.org/info/data/ftp/index.html. Source data are provided with 
this paper. Further information and requests for resources should be 
directed to and will be fulfilled by the corresponding author.

Code availability
Custom codes and the training features used in the study are available 
at https://github.com/chienlinglin/modeling-intron-variants/.

https://github.com/gagneurlab/MMSplice_MTSplice
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https://www.biobank.org.tw/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE179892
https://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=1351580935_14MOQtNDW7V78RaXEDp3Yy4m4PTb&c=chr2&hgTracksConfigPage=configure&hgtgroup_compGeno_close=0#compGenoGroup
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https://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=1351580935_14MOQtNDW7V78RaXEDp3Yy4m4PTb&c=chr2&hgTracksConfigPage=configure&hgtgroup_compGeno_close=0#compGenoGroup
https://attract.cnic.es/download
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https://asia.ensembl.org/info/data/ftp/index.html
https://github.com/chienlinglin/modeling-intron-variants/


Nature Structural & Molecular Biology

Article https://doi.org/10.1038/s41594-022-00844-1

References
44. Bonano, V. I., Oltean, S. & Garcia-Blanco, M. A. A protocol for 

imaging alternative splicing regulation in vivo using fluorescence 
reporters in transgenic mice. Nat. Protoc. 2, 2166–2181 (2007).

45. Li, H. et al. The Sequence Alignment/Map format and SAMtools. 
Bioinformatics 25, 2078–2079 (2009).

46. Cotto, K. C. et al. RegTools: Integrative analysis of genomic and 
transcriptomic data to identify splice altering mutations across 35 
cancer types.Cancer Res. 80(16 Suppl), 2136 (2020).

47. Lorenz, R. et al. ViennaRNA Package 2.0.Algorithm Mol. Biol. 6, 26 
(2011).

48. Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: 
A sequence logo generator. Genome Res 14, 1188–1190 (2004).

49. Ke, S. et al. Quantitative evaluation of all hexamers as exonic 
splicing elements. Genome Res. 21, 1360–1374 (2011).

50. Culler, S. J., Hoff, K. G., Voelker, R. B., Berglund, J. A. & Smolke, 
C. D. Functional selection and systematic analysis of intronic 
splicing elements identify active sequence motifs and associated 
splicing factors. Nucleic Acids Res. 38, 5152–5165 (2010).

51. Wang, Y., Ma, M., Xiao, X. & Wang, Z. Intronic splicing enhancers, 
cognate splicing factors and context-dependent regulation rules. 
Nat. Struct. Mol. Biol. 19, 1044–1052 (2012).

52. Giudice, G., Sanchez-Cabo, F., Torroja, C. & Lara-Pezzi, E. ATtRACT 
– a database of RNA-binding proteins and associated motifs. 
Database (Oxford) 2016, baw035 (2016).

53. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for 
generalized linear models via coordinate descent. J. Stat. Softw. 
33, 1–22 (2010).

54. Tibshirani, R. et al. Strong rules for discarding predictors in 
lasso-type problems. J. R. Stat. Soc. Series B Stat. Methodol. 74, 
245–266 (2012).

55. Howe, K. L. et al. Ensembl 2021. Nucleic Acids Res. 49, D884–D891 
(2021).

56. Saito, T. & Rehmsmeier, M. Precrec: fast and accurate 
precision-recall and ROC curve calculations in R. Bioinformatics 
33, 145–147 (2017).

57. Lin, J. C., Hsiao, W. W. W. & Fan, C. T. Transformation of the Taiwan 
Biobank 3.0: vertical and horizontal integration. J. Transl. Med 18, 
304 (2020).

58. Chang, C. C. et al. Second-generation PLINK: rising to the 
challenge of larger and richer datasets. Gigascience 4, 7 (2015).

59. Shaun Purcell, C. C. PLINK. v.1.9 edn; www.cog-genomics.org/
plink/1.9/ (2019).

60. Shaun Purcell, C. C. PLINK. v.2.0 edn; www.cog-genomics.org/
plink/2.0/ (2019).

61. Manichaikul, A. et al. Robust relationship inference in genome-wide 
association studies. Bioinformatics 26, 2867–2873 (2010).

62. Ripley, B., Venables, W. & Ripley, M. B. Package ‘nnet’. R. package 
v.7, 3–12 (2016).

Acknowledgements
We thank M.-C. Tsai, Senior Scientific Editor at Cell, for constructive 
advice and editing the manuscript. We thank the Genomics Core of 
Institute of Molecular Biology (IMB), Academia Sinica, for performing 
the amplicon sequencing. We thank all members of IMB, particularly 
H.-J. Cheng, J.-Y. Leu, S.-C. Cheng and S.-H. Chen, for tremendous 
help and support. This work was supported by Career Development 
Award and Multidisciplinary Health Cloud Research Program of 
Academia Sinica (AS-CDA-108-M03 and AS-PH-109-01-3), Career 
Development Award of National Health Research Institute, Taiwan 
(NHRI-EX109-10908BC) and Excellent Young Scholar Research 
Grants and Ta-You Wu Memorial Award of Ministry of Science 
and Technology, Taiwan (MOST 109-2628-B-001-014-MY1 and 
108-2118-M-001-013-MY5).

Author contributions
H.-L.C., Y.-T.C., J.-Y.S., Y.-L.W. and C.-L.L. carried out experiments and 
analysis. H.-N.L., C.-H.A.Y., Y.-J.H., Y.-T.C. and C.-L.L. established the 
web server tool. Y.-T.H. supervised statistical analysis. H.-L.C., Y.-T.C., 
J.-Y.S. and C.-L.L. wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41594-022-00844-1.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41594-022-00844-1.

Correspondence and requests for materials should be addressed to 
Chien-Ling Lin.

Peer review information Nature Structural & Molecular Biology 
thanks Ana Fiszbein and the other, anonymous, reviewer(s) for their 
contribution to the peer review of this work. Peer reviewer reports 
are available. Sara Osman was the primary editor on this article and 
managed its editorial process and peer review in collaboration with 
the rest of the editorial team.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.cog-genomics.org/plink/1.9/
http://www.cog-genomics.org/plink/1.9/
http://www.cog-genomics.org/plink/2.0/
http://www.cog-genomics.org/plink/2.0/
https://doi.org/10.1038/s41594-022-00844-1
https://doi.org/10.1038/s41594-022-00844-1
http://www.nature.com/reprints


Nature Structural & Molecular Biology

Article https://doi.org/10.1038/s41594-022-00844-1

Extended Data Fig. 1 | Analysis flow of the study.
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Extended Data Fig. 2 | Workflow of the library construction. (a) Primers used 
in the overlapping PCR. (b) The procedure of overlapping PCR. In brief, oligo 
pools and the other parts of the splicing minigenes were amplified by 25 PCR 
cycles. The fragment containing the promoter and the first exon (PCR product 
1) was stitched to the oligo pool (PCR product 2) by overlapping PCR using 20 

amplification cycles. Then, the stitched product (PCR product 1+2) was further 
stitched with the fragment containing the 3rd exon and polyadenylation signal 
(PCR product 3) using 20 amplification cycles to obtain the final construct (PCR 
product 1+2+3).
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Extended Data Fig. 3 | Massively parallel splicing assay (MaPSy) showing high 
consistency between repeats. (a) Spearman’s correlation between 4 RNA-seq 
total read counts after alignment. (b) Spearman’s correlation between 4 RNA-seq 
read count with spliced reads using GT-AG as splice sites. (c) Principle analysis 

for the spliced outcome of total RNA-seq read count. (d) Principle analysis for 
the spliced outcome of RNA-seq read count after GT-AG splice site filtration on 
spliced reads.
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Extended Data Fig. 4 | Individual WT/mt pair validation of the Massively 
parallel splicing assay (MaPSy). Single minigene WT was transfected in 
HEK293T cells for splicing. The splicing outcome was examined by RT-PCR. 

Genomic coordinates, transcript ID, gene name and the corresponding introns 
were labeled accordingly. A representative experiment of three repeats is 
presented.



Nature Structural & Molecular Biology

Article https://doi.org/10.1038/s41594-022-00844-1

Extended Data Fig. 5 | Characters of intronic 3’-end splicing variants. (a) 
Significant splicing variants are significantly closer to the 3’ss. Identity of 
two distributions was examined by two-sided Kolmogorov-Smirnov test. (b) 
Mutation effect on splicing efficiency of variants of various pathogenic levels. 
n = 247 variants. (c) Genome-wide association between the number of intronic 
splicing regulatory elements near the 5’ss and the intron length, stratified by 
exon length, related to Fig. 2f. n = 704,953 introns. (d) Enrichment of add-AG 
variants in the significant splicing variants. (e) Differential exon-intron GC 

content for non-significant and significant add-AG variants, stratified by intron 
length, related to Fig. 3f. n = 281 add AG variants. **: P-value of two-sided Wilcoxon 
test between the non-significant and HC significant variants 9 × 10−4; * 0.01. The 
boxes in box plots represent medians (central line) and interquartile ranges (IQR; 
25th to 75th percentile). The whiskers indicate ±1.5 × IQR from the box or the last 
data point within that and the dots show the outliers (b,c,e). (f ) Preference of 3’ss 
with various 3’ss strengths was examined by 3’ss swapping assay with splicing 
minigenes. A representative experiment of three repeats is presented.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Sensitivity analysis of the generalized linear model 
that predicts splice-altering intronic mutations, related to Fig. 4. (a) 
Segregation of intronic mutations into two models based on intronic location 
and AG addition, same as Fig. 4a. (b-d) The left-most presents the top 10 
contributory factors predicting mutations in each category that affect splicing, 
same as Fig. 4b, d and f. Right next to the factors is the ‘variance inflation 

factor (VIF)’ that examines the collinearity of variables. VIF smaller than 5 is an 
indication of independence of variables without a collinear effect. Z-score of 
univariate GLM in the middle column shows the size of the marginal influence 
of each variable (without other variables in the model). The right-most figure 
shows the consistency of variable selection with 20 different random selections 
of training data.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Generalized linear model to synthesize predictors of 
splicing altering non-AG-creating intronic mutations and splicing efficiency 
without WT splicing efficiency. (a) ROC curve of the non-AG model without WT 
splicing efficiency, similar to Fig. 4e. (b) Top 10 contributing factors to predict 
non-AG mutations affecting splicing without WT splicing efficiency, similar to 
Fig. 4d. (c) ROC curve of the 5’-end model without WT splicing efficiency, similar 
to Fig.4g. (d) Top 10 contributing factors to predict 5’-end mutations affecting 
splicing without WT splicing efficiency, similar to Fig. 4f. (e,g) Explanation power 
of each splicing efficiency model without WT splicing efficiency of (e) Novel 
AG mutations (g) non-AG mutations. The explanatory power of each model on 

the test dataset was estimated by Pearson’s correlation (two-tailed), R square, 
and RMSE (root-mean-square error). The gray area displays the 95% confidence 
interval for predictions from the linear model. (f,h) All contributing factors 
to predict (f) novel AG mutations and (h) non-AG mutations affecting splicing 
without WT splicing efficiency. An ‘alt’ factor refers to a canonical property in 
the context of sequence variation. A ‘△ (delta)’ factor refers to the difference of 
scores/motifs between the alt and WT sequence. A ‘novel’ factor refers to a new 
property associated with the novel 3’ss AG (f). More detailed descriptions of the 
factors can be found in Supplementary Table 2.
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Extended Data Fig. 8 | Intrinsic features of the BS and 3’ss regulate splice 
outcome. (a) Genome-wide distribution of A-, C-, T- and G-branchpoints (bp) 
relative to the 3’ss. (b) Proportion of branchpoints supporting constitutive 

splicing, sorted according to relative distance to the 3’ss. (c) Minimum free 
energy of BS pairing with the U2 BS recognition region, represented by boxplots 
for each position. (d) PhyloP100 conservation level of bp relative to the 3’ss.
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